

Economics of LED vs HID Lighting Systems

Eric Haugaard
Director of Technology
Beta Lighting

The Question?

Compared to HID based product solutions, do LED product solutions have the potential to more positively impact the environment and the economy?

Maximum Green / Maximum Greed

Possibilities

- Lower associated energy, waste, maintenance and disposal costs
 - Lower total encompassed energy cost to produce the LED product alternative
 - Lower Product Life Cycle Costs?
 - Lower total encompassed energy cost to maintain and dispose of the LED product alternative
 - Lower operating energy over life
 - Lower First Cost / First Installed Cost?
 - Greater recyclability
 - Higher recyclable content
 - Lower net cost and energy required to recycle
 - Higher US Based Manufacturing Content

Product Lifecycle Material Processing and Handling

HID

- Raw Material Processing (Harvesting, Mining, etc.)
- Fabrication
 - Stamping
 - Casting
 - Other Molding
 - Extruding
 - Finishing
 - Assembly
- Installation
- Scheduled Maintenance (re-lamping / lamp disposal)
- Salvaging and Recycling
- Transportation
- Etc.

LED

- Raw Material Processing (Harvesting, Mining, etc.)
- Fabrication
 - Stamping
 - Casting
 - Other Molding
 - Extruding
 - Finishing
 - Circuit Board Assembly
 - Assembly
- Installation
- Scheduled Maintenance (no re-lamping)
- Salvaging and Recycling
- Transportation
- Etc.

Typical Manufactured Components HID

- Fixture Housing
 - Aluminum
 - Die Cast
 - Extruded
 - Fabricated
- Optical Assembly
 - Aluminum Reflector
 - Glass Refractor / Lens
 - Plastic Refractor / Lens
- Control Gear
 - Magnetic Ballast / Electrolytic Capacitor / Electronic Ignitor
- Lamp

Typical Manufactured Components LED

- Fixture Housing
 - Aluminum
 - Die Cast
 - Extruded
 - Fabricated
- Optical Assembly
 - Aluminum Reflector
 - Glass Refractor / Lens
 - Plastic Refractor / Lens
- Control Gear
 - Electronic Driver
- Packaged LED / Circuit Board Assembly

Possible LED Benefits over HID Current and Future

- Lower Manufacturing Process Energy Consumption for Comparable Lighting Performance
 - ◆ Cleaner (i.e. Greener) Manufacturing Processes?
- Lower Transportation Resources Required
 - Comparably Smaller / Lighter Weight Products
 - Comparably Higher % USA Based Transportation
 - ◆ Lower Service Requirements (Re-lamping)
- Lower Carbon Foot Print?
 - ◆If so, how do we quantify it?

Lower Operating Carbon Footprint?

- Higher Target Efficacy
 - Comparably Better Application Level Performance With Less Energy Consumed
 - Lower power density

Optimizing LED Target Efficacy

- Thermal Management
- Optical Control

Thermal Management

Goal

- Maximize Light Extraction From LED Package
- Minimize Lumen Depreciation
 - Maximize Lumen Maintenance

Optical Control

Bare LED Package Illustration

Optical Control

Illustration of Altered
Distribution
(Secondary Optic Added)

Cub Foods

LED Scalability Benefit

- Potential for Greater Granularity in Delivered Luminous Flux at the Luminaire Level
 - <100 lumen increments Possible for luminaires incorporating High Power 1 watt LEDs
 - Application "Fine Tuning" potential

Economic Challenges Compared to HID

Cost Scaling

- HID Products
 - Lower cost per delivered lumens for higher power products
 - Example
 - 70W Metal Halide Product = \$X
 - 150W Metal Halide Product ≈ \$1.2X

Cost Scaling

- LED Products
 - Slightly Lower cost per delivered lumens for higher power products
 - Example
 - 30 LED Product = \$X
 - 60 LED Product ≈ \$1.7X

Possible Barriers to Adoption

- High First Cost
- Long Payback Period
 - Product Warrantee Shortfall
- Uncertainty in Predicted Long Term Performance
 - Lumen Maintenance
 - Color Stability
- Insufficient / Incomplete Product Performance and Reporting Standards
- Lack of Application Level Experience and Recommended Practices

Mercury?

- ~40 million MH lamps in US
 (1-100 mg of Mercury per Lamp)
 - ◆70 W MH (~4 mg of Mercury)
 - ◆400 W MH (~60 mg of Mercury)
- Coal Burning Power Plants

Value Analysis Total Cost of Ownership Illustration

Thank You

Eric Haugaard

Opportunities and Challenges

Product Lifecycle Environmental Effects LED vs Others

- Outdoor Street and Area Lighting Products
 - ◆HID
 - Metal Halide
 - High Pressure Sodium
 - High Pressure Mercury
 - **♦LED**

Economic Optimizing

Drive Current / LED Count Balance

Arbitrary Example

Drive Current (mA)	350	525
# of LED's	50	40
Total Delivered Lumens At 50,000 Hours (≈ 12 years)	4085	3818
Consumption (watts)	66	84
Efficacy (LPW)	61.89	45.45
Product Cost	\$X+150	\$X